• Barrett Barber postete ein Update vor 1 Jahr

    Traditionally produced piquant cheeses such as Feta or Provolone rely on pregastric lipolytic enzymes of animal origin to intensify flavor formation during ripening. Herein, we report a novel fungal lipase, derived from the phylum Basidiomycota to replace animal-derived products. A screening of 31 strains for the desired hydrolytic activities was performed, which revealed a promising fungal species. The secretome of an edible golden oyster mushroom, Pleurotus citrinopileatus, provided suitable enzymatic activity, and the coding sequence of the corresponding enzyme was identified by combining transcriptome and liquid chromatography high-resolution electrospray tandem mass spectroscopy (LC-HR-ESI-MS/MS) data. Recombinant expression in Escherichia coli BL21 (DE3) using chaperones GroES-GroEL and DnaK-DnaJ-GrpE was established. The recombinant lipolytic enzyme was purified and biochemically characterized in terms of thermal and pH stability, optimal reaction conditions, and kinetic data toward p-nitrophenyl esters. An application in the microscale production of Feta-type brine cheese revealed promising sensory properties, which were confirmed by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analyses in comparison with the reference enzyme opti-zym z10uc from goat origin. Supplementation with 2.3 U of the heterologously expressed fungal lipase produced the most comparable free fatty acid profile after 30 days of ripening. The flavor and texture formed during the application of the new lipase from P. citrinopileatus proved to be competitive to the use of pregastric lipases and could therefore replace the products of animal origin.Hydrogen, the smallest element, easily forms bonds to host/dopant atoms in semiconductors, which strongly passivates the original electronic characteristics and deteriorates the final reliability. Here, we demonstrate a concept of unidirectional elimination of hydrogen from semiconductor wafers as well as electronic chips through a giant local electric field induced by compact chloridions. We reveal an interactive behavior of chloridions, which can rapidly approach and take hydrogen atoms away from the device surface. A universal and simple technique based on a solution-mediated three-electrode system achieves efficient hydrogen elimination from various semiconductor wafers (p-GaN, p-AlGaN, SiC, and AlInP) and also complete light emitting diodes (LEDs). The p-type conductivity and light output efficiency of H-eliminated UVC LEDs have been significantly enhanced, and the lifetime is almost doubled. Moreover, we confirm that under a one-second irradiation of UVC LEDs, bacteria and COVID-19 coronavirus can be completely killed (>99.93%). This technology will accelerate the further development of the semiconductor-based electronic industry.A peer-mentoring network, funded by the National Science Foundation ADVANCE program, profoundly impacted the career trajectory of five women chemistry faculty at predominantly undergraduate institutions. By providing each other support, encouragement, information, and accountability, we advanced our careers, became leaders in our own right, and implemented change at our institutions. To extend this benefit to more women STEM faculty, we have developed and implemented a model to support 74 faculty and administrators representing 51 institutions across the country.Intrinsically disordered proteins and unfolded proteins have fluctuating conformational ensembles that are fundamental to their biological function and impact protein folding, stability, and misfolding. Despite the importance of protein dynamics and conformational sampling, time-dependent data types are not fully exploited when defining and refining disordered protein ensembles. Here we introduce a computational framework using an elastic network model and normal-mode displacements to generate a dynamic disordered ensemble consistent with NMR-derived dynamics parameters, including transverse R2 relaxation rates and Lipari-Szabo order parameters (S2 values). We illustrate our approach using the unfolded state of the drkN SH3 domain to show that the dynamical ensembles give better agreement than a static ensemble for a wide range of experimental validation data including NMR chemical shifts, J-couplings, nuclear Overhauser effects, paramagnetic relaxation enhancements, residual dipolar couplings, hydrodynamic radii, single-molecule fluorescence Förster resonance energy transfer, and small-angle X-ray scattering.Recent advances in using biological scaffolds for nanoparticle synthesis have proven to be useful for preparing various nanostructures with uniform shape and size. Proteins are significant scaffolds for generating various nanostructures partly because of the presence of many functional groups to recognize different chemistries. In this endeavor, cocosin protein, an 11S allergen, is prepared from coconut fruit and employed as a potential scaffold for synthesizing Mn3O4 materials. The interaction between protein and manganese ions is studied in detail through isothermal calorimetric titration. At increased scaffold availability, the Mn3O4 material adopts the exact hexamer structure of the cocosin protein. The electrochemical supercapacitive properties of the cocosin-Mn3O4 material are found to have a high specific capacitance of 751.3 F g-1 at 1 A g-1 with cyclic stability (92% of capacitance retention after 5000 CV cycles) in a three-electrode configuration. The Mn3O4//Mn3O4 symmetric supercapacitor device delivers a specific capacitance of 203.8 F g-1 at 1 A g-1 and an outstanding energy and power density of 91.7 W h kg-1 and 899.5 W kg-1, respectively. These results show that cocosin-Mn3O4 could be considered a suitable electrode for energy storage applications. Moreover, the cocosin protein to be utilized as a novel scaffold in protein-nanomaterial chemistry could be useful for protein-assisted inorganic nanostructure synthesis in the future.Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.We demonstrate site-specific X-ray induced fragmentation across the sulfur L-edge of protonated cystine, the dimer of the amino acid cysteine. Ion yield NEXAFS were performed in the gas phase using electrospray ionization (ESI) in combination with an ion trap. The interpretation of the sulfur L-edge NEXAFS spectrum is supported by Restricted Open-Shell Configuration Interaction (ROCIS) calculations. The fragmentation pathway of triply charged cystine ions was modeled by Molecular Dynamics (MD) simulations. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons. The disulfide bridge breaks for resonant excitation at lower photon energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments initially formed subsequently break into smaller fragments.Conformational fluctuation, namely, protein interconversion between different conformations, is crucial to protein function. Outer surface protein A (OspA), comprising N- and C-terminal globular domains linked by a central β-sheet, is expressed on the surface of Borrelia burgdorferi, the causative agent of Lyme disease, and recognizes the TROSPA receptor in the tick gut. Solution nuclear magnetic resonance studies have shown that the central β-sheet and C-terminal domain containing TROSPA recognition sites are less stable than the N-terminal domain, revealing an intermediate conformation between the basic folded and completely unfolded proteins. We previously suggested that exposure of receptor-binding sites following denaturation of the C-terminal domain is advantageous for OspA binding to the receptor. Here, we observed amplification of a specific protein fluctuation by pressure perturbation and site-specific mutagenesis. The salt-bridge-destabilized mutant E160D and the cavity-enlarged mutant I243A favored the intermediate. BAY 2666605 PDE inhibitor The proportion of the intermediate accounted for almost 100% in E160D at 250 MPa. Strategies using a suitably chosen point mutation with high pressure are generally applicable for amplification of specific conformational fluctuation and potentially improve our understanding of the intermediate conformations of proteins. Knowledge of various conformations, including OspA intermediates, may be useful for designing a vaccine for Lyme disease.Understanding exciton diffusion properties in organic semiconductor films is crucial for organic solar cells because excitons need to diffuse to an electron donor/acceptor interface to dissociate into charges. We previously found that singlet excitons generated in the thin films of a novel naphthobisoxadiazole-based low-bandgap polymer PNOz4T exhibit two-dimensional exciton diffusion characteristics along the backbone and π-stacking directions owing to the HJ-aggregate property of PNOz4T. However, the diffusion constants along these directions could not be determined owing to the difficulty of data analysis. Herein, we present a detailed analysis based on a simulated annealing metaheuristic. We found that intrachain exciton motion can be faster than interchain hopping. On the basis of temperature dependence measurements, we found that exciton diffusion is more favorable at lower temperatures because the coherent component partly contributes to exciton motion.ConspectusLocalized surface plasmon resonance is a unique property appearing in certain metal nanostructures, which can generate hot carriers (electrons and holes) and bring about an intense electromagnetic field localized near the surface of nanostructures. Specific locations, such as the rough surfaces and gaps in nanostructures, where a strong electromagnetic field is formed are referred to as hot spots. Hot-spot-containing plasmonic nanostructures have shown great promise in molecular sensing and plasmon-induced catalytic applications by exploiting the unique optical properties of hot spots. In this Account, we will review our recent developments in the synthesis of Au nanostructures consisting of multiple hot spots and Au-based heteronanostructures combining secondary active metals or semiconductors with Au nanostructures as promising plasmonic platforms for hot-spot-induced sensing and photocatalysis. We first provide a brief introduction to Au nanocrystals and Au nanoparticle assemblies with multiple hot spots.

Coupon More
Logo