-
Bugge Grantham postete ein Update vor 1 Jahr
plays an important tumor suppressive role in HCC, with possible use as a biomarker and an intervention point for new therapeutic strategies.
SERPINA11 plays an important tumor suppressive role in HCC, with possible use as a biomarker and an intervention point for new therapeutic strategies.Transurethral resection of the prostate (TURP) is the gold standard surgical technique for endoscopic treatment of benign prostatic hyperplasia (BPH). Introduced in 2001, the bipolar energy appeared to be a valid alternative to the classical monopolar one with reduced risk of complication related to the use of saline irrigation and to the increased hemostatic efficacy. More recently, raising attention has been given to laser enucleation and vaporization techniques, which appear to achieve further advantages in terms of reduced hospital stay and complications compared to the resection ones. Few studies have investigated the cost/benefit ratio related to these techniques. The aim of this systematic review was to analyze the cost/benefit ratio of bipolar TURP (B-TURP) compared with other endoscopic procedures.
Recommended imaging modalities for prostate cancer staging have disappointing sensitivities, whereas [68Ga]-PSMA PET/CT (PET-PSMA) shows promising sensitivities and specificities in the initial management of prostate cancer. Recent studies have revealed that a significant change of management when PET-PSMA was used, with favorable negative predictive values.
In this retrospective study, we analyzed every PET-PSMA performed in our center for initial staging of intermediate and high-risk prostate cancer. Patients were divided into two groups based on whether imaging modalities other than PET-PSMA were performed. In patients submitted to radical prostatectomy, PET-PSMA findings were compared to histological analysis of the specimen.
PET-PSMA results of 57 patients were gathered, with 77.2% (n=44) having performed CT scan or bone scan (BS) prior to PET-PSMA. Prostate cancer management strategy was changed in 61.4% (n=27), when PET-PSMA was performed following CT and BS. BS and CT results were consistent with PET-PSMA in 43.2% and 44.8%, respectively. In 30 cases, a curative strategy was used based on PET-PSMA findings. PET-PSMA revealed a negative predictive value of 95.2% in 23 patients submitted to radical prostatectomy with bilateral pelvic lymphadenectomy. Prostate SUV values on preoperative PET-PSMA correlated with initial PSA, ISUP grade, PC risk staging and presence of extraprostatic lesions.
PET-PSMA is a key element for prostate cancer staging and management, with high diagnostic accuracy. More prospective studies need to be implemented to determine its role as a first-line staging tool.
PET-PSMA is a key element for prostate cancer staging and management, with high diagnostic accuracy. More prospective studies need to be implemented to determine its role as a first-line staging tool.CD52 is a small surface glycoprotein composed of 12 amino acids. CD52 is found mostly on the surface of mature immune cells, such as lymphocytes, monocytes, eosinophils, and dendritic cells, as well as the male genital tract within the epididymis and on the surface of mature sperm. Low CD52 expression is also found in neutrophils. CD52 function is not fully understood, although experiments with anti-CD52 antibodies have shown that CD52 is essential for lymphocyte transendothelial migration and may contribute to costimulation of CD4+ T cells and T-cell activation and proliferation. Although knowledge about exact CD52 function is still poor, CD52 presence on the surface of a broad spectrum of immune cells makes it a therapeutic target, especially in immunomediated diseases, such as multiple sclerosis. In multiple sclerosis, alemtuzumab is registered for adult patients with the relapsing-remitting form of the disease defined by clinical and imaging features. Despite the high efficacy of the drug, the main issue is its safety. The main adverse effects of alemtuzumab are associated with drug infusion due to cytokine release and cytotoxic effects of antibodies associated with lymphocyte depletion, which leads to immunosuppression, and secondary autoimmunity that may be the effect of excessive B-cell repopulation and cancer. This review presents current knowledge on the drug’s mechanism of action, efficacy and safety data from clinical trials, and real-world observations, including available though scarce data on using alemtuzumab in the COVID era.Mesenchymal stem cells have the fundamental ability to differentiate into multiple cells such as osteoblasts, neural cells, and insulin-producing cells. MicroRNAs (miRNAs) are single-strand and small non-coding RNAs involved in stem cells orientation into mature cells. There is no comprehensive data about the dynamic of distinct miRNAs during the differentiation of mesenchymal cells from adipose tissue into insulin-producing cells. In this study, we first differentiated adipose-derived mesenchymal stem cells into insulin-producing cells by a three-stepwise protocol. Differentiation capacity was confirmed by the dithizone staining method and hormone (insulin and C peptide) release analysis via electrochemiluminescence technique. In the final phase, the expression of hsa-miR-101a and hsa-miR-107 and two pancreatic genes, sex-determining region Y-box (SOX) 6 and neuronal differentiation 1 (NeuroD1) were examined during the differentiation procedure on days 0, 7, 14, 21, and 28 after induction, by using real-time PCR assay. The level of C-peptide and insulin were also measured at the end of the experiment. Dithizone staining showed trans-differentiation of adipose-derived mesenchymal stem cells into pancreatic β cells evidenced with red-to-brown appearance compared to the control group, indicating the potency to insulin production. These features were at maximum levels 28 days after cell differentiation. Real-time PCR revealed the increase of NeuroD1 and reduction of SOX6 during differentiation of stem cells toward insulin-producing cells (P less then 0.05). Both miR-101a and miR-107 showed prominent expression at day 28 (P less then 0.05). Changes in the expression of miR-101a and miR-107coincided with alteration of NeuroD1 and SOX6 that could affect mesenchymal stem cells commitment toward insulin-like beta cells.Telomeres are nucleoprotein complexes present at the ends of chromosome to maintain its integrity. Telomere length is maintained by an enzyme called „telomerase“. Thus, telomerase activity and telomere length are crucial for the initiation of cancer and tumors survival. selleck chemical Also, oxidative stress will cause DNA, protein, and/or lipid damage, which end with changes in chromosome instability, genetic mutation, and may affect cell growth and lead to cancer. Some genetic diseases such as chromosomal instability syndrome, overgrowth syndrome, and neurofibromatosis make the patients at higher risk for developing different types of cancers. Therefore, we aimed to estimate telomerase activity and oxidative stress in these patients. Blood samples were collected from 31 patients (10 with neurofibromatosis, 11 with chromosomal breakage, and 10 with overgrowth syndrome) and 12 healthy subjects. Blood hTERT mRNA was detected by real time quantitative reverse-transcription PCR (RT-qPCR). All patients were subjected to chromosolated in neurofibromatosis, chromosomal breakage and overgrowth groups in comparison with the control group (P = 0.001, 0.009, and 0.025, respectively). Chromosomal examination revealed normal karyotype in all four chromosomal breakage patients with positive diepoxybutane test. The results of the present study revealed altered telomerase activity and oxidative stress in the studied genetic disorders. More research studies with a larger number of patients are required to confirm whether this alteration is related to cancer occurrence risk or not.Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles c-MYC (-21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.StAR related lipid transfer domain containing 3 (STARD3) gene has been reported to be co-amplified with human epidermal growth factor receptor 2 (HER2) in breast carcinoma. STARD3 is necessary for cholesterol transfer and metabolism in tumor cells. The possible role played by STARD3 as a diagnostic and prognostic biomarker was investigated in breast cancer (BC). Data mining was performed using several bioinformatics websites to investigate the correlation of STARD3 with BC and its molecular subtypes, and conventional PCR was used to detect the STARD3 mRNA levels in a panel of BC cell lines. STARD3 was overexpressed in BC more than the other types of cancer. The results also showed that STARD3 expression was significantly associated with HER2+ BC tumors and BC cell lines, and low STARD3 mRNA and protein expression levels were observed in estrogen receptor-positive (ER+) and triple-negative BC (TNBC) patients. Moreover, high STARD3 expression levels predicted worse overall survival (OS), relapse-free survival (RFS) and disease metastasis-free survival (DMFS) in BC, and HER2+ BC. Notably, low expression of STARD3 was associated with poor OS in ER+ BC. Our findings suggest that STARD3 may have strong diagnostic and prognostic value for HER2+ breast carcinoma.Colorectal cancer (CRC) is one of the most prevalent diagnosed cancers and a common cause of cancer-related mortality. Despite effective clinical responses, a large proportion of patients undergo resistance to radiation therapy. Therefore, the identification of efficient targeted therapy strategies would be beneficial to overcome cancer radioresistance. Doublecortin-like kinase 1 (DCLK1) is an intestinal and pancreatic stem cell marker that showed overexpression in a variety of cancers. The transfection of DCLK1 siRNA to normal HCT-116 cells was performed, and then cells were irradiated with X-rays. The effects of DCLK1 inhibition on cell survival, apoptosis, cell cycle, DNA damage response (ATM and γH2AX proteins), epithelial-mesenchymal transition (EMT) related genes (vimentin, N-cadherin, and E-cadherin), cancer stem cells markers (CD44, CD133, ALDH1, and BMI1), and β-catenin signaling pathway (β-catenin) were evaluated. DCLK1 siRNA downregulated DCLK1 expression in HCT-116 cells at both mRNA and protein levels (P less then 0.