• Sheridan Ortiz postete ein Update vor 1 Jahr

    Additionally, CUMS exposure significantly decreased the expression of hippocampal synapse related proteins and the spine density of neurons in the DG region, accompanied by increasing the expression of hippocampal inflammatory cytokines, and promoted the activation of microglia in the hippocampus. The expression of HIF-1α was down-regulated as expected. However, DFO distinctly reversed the CUMS-induced impairments. The mechanism is associated with the DFO inhibition of inflammation by upregulating HIF-1 expression, thereby alleviating a series of pathology changes. Together, these findings suggest that DFO likely plays a protective role in cognitive impairments and synaptic plasticity deficits resulting from depression.Currently, the reported source of extracellular vesicles (EVs) for the treatment of ischemic stroke(IS)is limited to mammals. Moreover, these EVs are restricted to clinical translation by the high cost of cell culture. In this respect, Lactobacillus plantarum culture is advantaged by low cost and high yield. However, it is poorly understood whether Lactobacillus plantarum-derived EVs (LEVs) are applicable for the treatment of IS. Here, our results demonstrated that LEVs reduced apoptosis in ischemic neuron both in vivo and in vitro. As revealed by high-throughput sequencing, miR-101a-3p expression was significantly elevated by LEV treatment in OGD/R-induced neurons, as confirmed in the tMCAO mice treated with LEVs. Mechanistically, c-Fos was directly targeted by miR-101a-3p. In addition, c-Fos determined ischemia-induced neuron apoptosis in vivo and in vitro through the TGF-β1 pathway, miR-101a-3p inhibition aggravated ischemia-induced neuron apoptosis in vitro and in vivo, and miR-101a-3p overexpression produced the opposite results. Hsa-miR-101-3p was downregulated in the plasma of patients with IS but upregulated in the patients with neurological recovery after rt-PA intravenous thrombolysis. In conclusion, Our results demonstrated for the first time that LEVs might inhibit neuron apoptosis via the miR-101a-3p/c-Fos/TGF-β axis, and has-miR-101-3p is a potential marker of neurological recovery in IS patients.Coronavirus disease 2019 (COVID-19) infection evokes severe proinflammatory storm and pulmonary infection with the number of confirmed cases (more than 200 million) and mortality (5 million) continue to surge globally. A number of vaccines (e.g., Moderna, Pfizer, Johnson/Janssen and AstraZeneca vaccines) have been developed over the past two years to restrain the rapid spread of COVID-19. However, without much of effective drug therapies, COVID-19 continues to cause multiple irreversible organ injuries and is drawing intensive attention for cell therapy in the management of organ damage in this devastating COVID-19 pandemic. For example, mesenchymal stem cells (MSCs) have exhibited promising results in COVID-19 patients. Preclinical and clinical findings have favored the utility of stem cells in the management of COVID-19-induced adverse outcomes via inhibition of cytokine storm and hyperinflammatory syndrome with coinstantaneous tissue regeneration capacity. In this review, we will discuss the existing data with regards to application of stem cells for COVID-19.Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment (TME) through limiting immune cell infiltration into tumors. The defective vascular perfusion in tumors also impairs the delivery and efficacy of chemotherapeutic agents. Targeting abnormal tumor blood vessels has emerged as an effective therapeutic strategy to improve the outcome of chemotherapy and immunotherapy. In this study, we demonstrated that Salvianolic acid B (SalB), one of the major ingredients of Salvia miltiorriza elicited vascular normalization in the mouse models of breast cancer, contributing to improved delivery and response of chemotherapeutic agent cisplatin as well as attenuated metastasis. NGI-1 mouse Moreover, SalB in combination with anti-PD-L1 blockade retarded tumor growth, which was mainly due to elevated infiltration of immune effector cells and boosted delivery of anti-PD-L1 into tumors. Mechanistically, tumor cell enhancer of zeste homolog 2 (Ezh2)-driven cytokines disrupted the endothelial junctions with diminished VE-cadherin expression, which could be rescued in the presence of SalB. The restored vascular integrity by SalB via modulating the interactions between tumor cells and endothelial cells (ECs) offered a principal route for achieving vascular normalization. Taken together, our data elucidated that SalB enhanced sensitivity of tumor cells to chemotherapy and immunotherapy through triggering tumor vascular normalization, providing a potential therapeutic strategy of combining SalB and chemotherapy or immunotherapy for patients with breast cancer.

    We aimed to assess the effect of second-line anti-TB treatment and determine which drugs can achieve the greatest clinical benefit for DR-TB-HIV patients by comparing multiple chemotherapy regimens, to provide a basis for evidence-based practice.

    We searched three electronic databases (PubMed, Web of Science and Cochrane) for related English studies published since 2010. A random-effect model was used to estimate the pooled result for the treatment outcomes. Subgroup analysis based on possible factors, such as ART, baseline CD4 T-cell count, treatment regimens, and profiles of drug resistance, was also conducted to assess factors for favorable outcome. Outcomes were treatment success and mortality.

    38 studies, 40 cohorts with 9279 patients were included. The pooled treatment success, mortality, treatment failure, and default rates were 57.5 % (95 % CI 53.1-61.9), 21 % (95 % CI 17.8-24.6), 4.8 % (95 % CI 3.5-6.5), and 10.7 % (95 % CI 8.7-13.1), respectively, in patients with DR-TB and HIV co-infection. Ssize the need for high-quality studies to further investigate the optimal treatment regimen for DR-TB-HIV.The infection of the kinetoplastid flagellate Azumiobodo hoyamushi causes soft tunic syndrome that often results in mass mortality in the aquaculture of the edible ascidian Halocynthia roretzi. In the diseased ascidian individuals, the flagellates are exclusively found in the tunic matrix that entirely cover the epidermis, and never invade into internal tissues, such as a mantle. The present study for the first time demonstrated that the ascidian blood plasma and hemolymph have an activity to agglutinate and disintegrate the flagellates, suggesting the innate immunity protects the internal tissue from the invasion of A. hoyamushi. This activity is indifferent between the healthy and the diseased individuals. Allo-specific recognition and cytotoxic reaction among ascidian hemocytes, so-called contact reaction, occur among the individuals of healthy-healthy, healthy-diseased, and diseased-diseased combination, and therefore, the hemocytes from diseased individuals still retain the allo-reactivity. Moreover, the allo-reactive combinations are not changed under the presence of the flagellates, indicating the flagellates neither suppress nor induce the effector system of the contact reaction. These results suggest that the infection of A. hoyamushi does not impair the innate immunity in the ascidian hemolymph.Columnaris is a bacterial disease, found in freshwater fish, caused by Flavobacterium oreochromis. The disease has a devastating impact on a range of cultured and wild freshwater fish species e.g. Lates calcarifer (Asian sea bass), which is a serious economic losses to the freshwater aquaculture in Thailand. The disease can be prevented by an efficacious vaccine, however, no licensed effective vaccine is available to date. Current study was based on the development of a novel mucoadhesive nano-encapsulated vaccine (EncapFlavoNP++), where, cationic lipid-based nanoparticles were combined with an antigen obtained from F. oreochromis. Various parameters including transmission electron microscopy (TEM), physiochemical properties; zeta potential, and polydispersity index were determined. The TEM results depicted well-formed circular-shaped nano-encapsulates complexed with cationic lipid surfactants. The average diameter of the molecules was 200 nm, having a zeta potential of 31.82 mV, while, the polydispersity ind5.83% and RPS 52.87), respectively as compared to the control group (P less then 0.05). It can be concluded that immunization with EncapFlavoNP++ solution has significant immunologic and protective effects against Columnaris disease. Furthermore, the prepared vaccine candidate has more potential as compared to whole-cell immersion vaccination (FK-WC). It can be used on a large scale in the freshwater aquaculture industry to boost immunity against Columnaris disease.Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.Pseudomonas plecoglossicida is a Gram-negative pathogenic bacterium that causes visceral white spot disease in several marine fish species, resulting in high mortality and financial loss. Based on previous RNA sequencing (RNA-seq) results, rpoD gene expression is significantly up-regulated in P. plecoglossicida during infection, indicating that rpoD may contribute to bacterial pathogenicity. To investigate the role of this gene, five specific short hairpin RNAs (shRNAs) were designed and synthesized based on the rpoD gene sequence, with all five mutants exhibiting a significant decrease in rpoD gene expression in P. plecoglossicida. The mutant with the highest silencing efficiency (89.2%) was chosen for further study. Compared with the wild-type (WT) P. plecoglossicida strain NZBD9, silencing rpoD in the rpoD-RNA interference (RNAi) strain resulted in a significant decrease in growth, motility, chemotaxis, adhesion, and biofilm formation in P. plecoglossicida. Silencing of rpoD also resulted in a 25% increase in the survival rate, a one-day delay in the onset of death, and a significant decrease in the number of white spots on the spleen surface of infected orange-spotted groupers (Epinephelus coioides). In addition, rpoD expression and pathogen load were significantly lower in the spleens of E. coioides infected with the rpoD-RNAi strain than with the WT strain of P. plecoglossicida. We performed RNA-seq of E. coioides spleens infected with different P. plecoglossicida strains. Results showed that rpoD silencing in P. plecoglossicida led to a significant change in the infected spleen transcriptomes. In addition, comparative transcriptome analysis showed that silencing rpoD caused significant changes in complement and coagulation cascades and the IL-17 signaling pathway. Thus, this study revealed the effects of the rpoD gene on P. plecoglossicida pathogenicity and identified the main pathway involved in the immune response of E. coioides.

Coupon More
Logo