-
Jennings Williams postete ein Update vor 11 Monaten, 3 Wochen
Strabismus occurs in about 2% of children and may result in amblyopia or lazy eyes and loss of depth perception. However, whether/how long-term strabismus shapes the brain structure and functions in children with concomitant strabismus (CS) is still unclear. In this study, a total of 26 patients with CS and 28 age-, sex-, and education-matched healthy controls (HCs) underwent structural and resting-state functional magnetic resonance imaging examination. The cortical thickness and amplitude of low-frequency fluctuation (ALFF) were calculated to assess the structural and functional plasticity in children with CS. Compared with HCs group, patients with CS showed increased cortical thickness in the precentral gyrus and angular gyrus while decreased cortical thickness in the left intraparietal sulcus, parieto-occipital sulcus, superior and middle temporal gyrus, right ventral premotor cortex, anterior insula, orbitofrontal cortex, and paracentral lobule. Meanwhile, CS patients exhibited increased ALFF in the prefrontal cortex and superior temporal gyrus, and decreased ALFF in the caudate and hippocampus. These results show that children with CS have abnormal structure and function in brain regions subserving eye movement, controls, and high-order cognitive functions. Our findings revealed the structural and functional abnormalities induced by CS and may provide new insight into the underlying neural mechanisms for CS.Aging is known to increase the risk of falling. In older people, whose share in the total population is rising sharply, the Sensory Organization Test (SOT, Equitest NeuroCom) is a useful tool during rehabilitation and in clinical research for assessing postural stability, risk of falling, and balance improvement. Normative data for the SOT in the healthy population older than 79 years have not been previously published. We recruited 53 recreationally active healthy subjects aged 80 years and older from the general population in a cross-sectional study. We presented the normative data for SOT for the 80-84 and 85-89 years groups. Our results showed that the „vestibular“ balance control tended to be affected by aging more than the vision and proprioception-based systems. A striking reduction in performance after the age of 85 years was observed. These findings will be useful for clinical and research purposes.Many tasks require the skilled interaction of both hands, such as eating with knife and fork or keyboard typing. However, our understanding of the behavioural and neurophysiological mechanisms underpinning bimanual motor learning is still sparse. Here, we aimed to address this by first characterising learning-related changes of different levels of bimanual interaction and second investigating how beta tACS modulates these learning-related changes. To explore early bimanual motor learning, we designed a novel bimanual motor learning task. In the task, a force grip device held in each hand (controlling x- and y-axis separately) was used to move a cursor along a path of streets at different angles (0°, 22.5°, 45°, 67.5°, and 90°). Each street corresponded to specific force ratios between hands, which resulted in different levels of hand interaction, i.e., unimanual (Uni, i.e., 0°, 90°), bimanual with equal force (Bi eq , 45°), and bimanual with unequal force (Bi uneq 22.5°, 67.5°). In experiment 1, 40 healthy paction. This should pave the way for future neuroimaging studies to further investigate the underlying mechanism of bimanual motor learning.Humans can quickly approximate how many objects are in a visual image, but no clear consensus has been achieved on the cognitive resources underlying this ability. Previous work has lent support to the notion that mechanisms which explicitly represent the locations of multiple objects in the visual scene within a mental map are critical for both visuo-spatial working memory and enumeration (at least for relatively small numbers of items). Regarding the cognitive underpinnings of large numerosity perception, an issue currently subject to much controversy is why numerosity estimates are often non-veridical (i.e., susceptible to biases from non-numerical quantities). Such biases have been found to be particularly pronounced in individuals with developmental dyscalculia (DD), a learning disability affecting the acquisition of arithmetic skills. Motivated by findings showing that DD individuals are also often impaired in visuo-spatial working memory, we hypothesized that resources supporting this type of working mion impacting visuo-spatial (but not verbal) performance. Overall, these results suggest that representing visual numerosity in a way that is unbiased by non-numerical quantities relies on processes which explicitly segregate/identify the locations of multiple objects that are shared with visuo-spatial (but not verbal) working memory. This shared resource may potentially be impaired in DD, explaining the observed co-occurrence of working memory and numerosity discrimination deficits in this clinical population.Intermittent theta-burst stimulation (iTBS) using transcranial magnetic stimulation (TMS) is known to produce excitatory after-effects over the primary motor cortex (M1). Recently, transcranial alternating current stimulation (tACS) at 10 Hz (α) and 20 Hz (β) have been shown to modulate M1 excitability in a phase-dependent manner. Therefore, we hypothesized that tACS would modulate the after-effects of iTBS depending on the stimulation frequency and phase. To test our hypothesis, we examined the effects of α- and β-tACS on iTBS using motor evoked potentials (MEPs). Eighteen and thirteen healthy participants were recruited for α and β tACS conditions, respectively. tACS electrodes were attached over the left M1 and Pz. iTBS over left M1 was performed concurrently with tACS. The first pulse of the triple-pulse burst of iTBS was controlled to match the peak (90°) or trough (270°) phase of the tACS. A sham tACS condition was used as a control in which iTBS was administered without tACS. Thus, each participant was iTBS might disturb the coupling of θ and γ oscillations during iTBS. To conclude, the action of iTBS is differentially modulated by neuronal oscillations depending on whether α- or β-tACS is applied.It remains controversial whether long-term logographic-logographic bilingual experience shapes the special brain functional subnetworks underlying different components of executive function (EF). To address this question, this study explored the differences in the functional connections underlying EF between the Cantonese-Mandarin bilinguals and Mandarin monolinguals. 31 Cantonese-Mandarin bilinguals and 31 Mandarin monolinguals were scanned in a 3-T magnetic resonance scanner at rest. 4 kinds of behavioral tasks of EF were tested. Network-based statistics (NBS) was performed to compare the connectomes of fronto-parietal (FP) and cingulo-opercular (CO) network between groups. The results showed that the bilinguals had stronger connectivity than monolinguals in a subnetwork located in the CO network rather than the FP network. The identified differential subnetwork referred to as the CO subnetwork contained 9 nodes and 10 edges, in which the center node was the left mid-insula with a degree centrality of 5. The functional connectivity of the CO subnetwork was significantly negatively correlated with interference effect in bilinguals. The results suggested that long-term Cantonese-Mandarin bilingual experience was associated with stronger functional connectivity underlying inhibitory control in the CO subnetwork.Objective This pilot study aimed to investigate the immediate effects of single-session intermittent theta-burst stimulation (iTBS) on the cerebellar vermis during a balance task, which could unveil the changes of cerebral cortical excitability in healthy individuals. Subjects A total of seven right-handed healthy subjects (26.86 ± 5.30 years) were included in this study. Interventions Each subject received single-session iTBS on cerebellar vermis in a sitting position. Main Measures Before and after the intervention, all subjects were asked to repeat the balance task of standing on the left leg three times. Each task consisted of 15 s of standing and 20 s of resting. Real-time changes in cerebral cortex oxygen concentrations were monitored with functional near-infrared spectroscopy (fNIRS). DSS Crosslinker datasheet During the task, changes in blood oxygen concentration were recorded and converted into the mean HbO2 for statistical analysis. Results After stimulation, the mean HbO2 in the left SMA (P = 0.029) and right SMA (P = 0.043) significantly increased compared with baseline. However, no significant changes of mean HbO2 were found in the bilateral dorsolateral prefrontal lobe (P > 0.05). Conclusion Single-session iTBS on the cerebellar vermis in healthy adults can increase the excitability of the cerebral cortex in the bilateral supplementary motor areas during balance tasks. Clinical Trial Registration [www.ClinicalTrials.gov], identifier [ChiCTR2100048915].Introduction Chronic inflammatory demyelinating polyneuropathy (CIDP) is a complex autoimmune disease caused by dysregulated response to not fully recognized antigens. Some association between CIDP and inflammatory bowel disease (IBD) has been reported, but the exact pathophysiological links of these disorders are not well understood. Aim of the Study To evaluate fecal calprotectin as a biomarker of gut inflammation in CIDP patients without IBD. Methods Fifteen patients with CIDP and 15 healthy controls were included in the study. The CIDP diagnosis was based on the EFNS/PNS criteria. The occurrence of bowel symptoms was assessed based on a questionnaire. The quantitative evaluation of fecal calprotectin level was performed by the ELISA test. Results The fecal calprotectin level (μg/g) expressed as median along with the lower and upper quartiles [25Q-75Q] was significantly higher in CIDP patients compared to the controls 26.6 [17.5-109.0] vs 15.6 [7.1-24.1], p = 0.0066. Abnormal fecal calprotectin level (>50 μg/g) was found in 33% of all CIDP patients and in none of the control subjects. The patients with abnormal fecal calprotectin level did not differ from the rest of the study group regarding the neurological status. The most common bowel symptoms reported by CIDP patients included constipation (33%), feeling of incomplete evacuation (33%), bloating (27%), and alternating bowel movement pattern (27%). Conclusion In one-third of CIDP patients the signs of gut immune system activation have been observed. This finding may be associated with CIDP pathogenesis and induction of autoimmune response as well as concomitant dysautonomia with gastrointestinal symptoms.Previous cross-sectional studies reported positive effects of meditation on the brain areas related to attention and executive function in the healthy elderly population. Effects of long-term regular meditation in persons with mild cognitive impairment (MCI) and Alzheimer’s disease dementia (AD) have rarely been studied. In this study, we explored changes in cortical thickness and gray matter volume in meditation-naïve persons with MCI or mild AD after long-term meditation intervention. MCI or mild AD patients underwent detailed clinical and neuropsychological assessment and were assigned into meditation or non-meditation groups. High resolution T1-weighted magnetic resonance images (MRI) were acquired at baseline and after 6 months. Longitudinal symmetrized percentage changes (SPC) in cortical thickness and gray matter volume were estimated. Left caudal middle frontal, left rostral middle frontal, left superior parietal, right lateral orbitofrontal, and right superior frontal cortices showed changes in both cortical thickness and gray matter volume; the left paracentral cortex showed changes in cortical thickness; the left lateral occipital, left superior frontal, left banks of the superior temporal sulcus (bankssts), and left medial orbitofrontal cortices showed changes in gray matter volume.