-
Cruz Whittaker postete ein Update vor 12 Monaten
The increasingly popular, lead-free perovskite, Cs3Bi2I9 has a vulnerable Bi3+ state under reductive potentials, due to the high standard reduction potential of Bi3+/Biδ+ (0 less then δ less then 3). Contrary to this fundamental understanding, herein, ligand-coated Cs3Bi2I9 nanodiscs (NDs) demonstrate outstanding electrochemical stability with up to -1 V versus a saturated calomel electrode in aqueous 0.63 M (5% v/v) and 6.34 M (50% v/v) hydroiodic acid (HI), with a minor BiI3 fraction due to the unavoidable partial aqueous disintegration of the perovskite phase after 8 and 16 h, respectively. A dynamic equilibrium of saturated 0.005 M NDs maintains the common ion effect of I-, and remarkably stabilizes ∼93% Bi3+ in 0.63 M HI under a strong reductive potential. In comparison, the hexagonal phase of bulk Cs3Bi2I9 disintegrates considerably in the semi-aqueous media. Lowering the concentration of synthetic HI from the commonly used ∼50% v/v by elevating the pH from -0.8 to 0.2 helps in reducing the cost per unit of H2 production. Our Cs3Bi2I9 NDs with a hexagonal lattice have 4-6 (002) planes stacked along the c-axis. With 0.005 M photostable NDs, 22.5 μmol h-1 H2 is photochemically obtained within 8 h in a 6.34 M HI solution. Electrocatalytic H2 evolution occurs with a turnover frequency of 11.7 H2 per s at -533 mV and outstanding operational stability for more than 20 h.STEM nano-moiré can achieve high-precision deformation measurement in a large field of view. In scanning moiré fringe technology, the scanning line and magnification of the existing transmission electron microscope (TEM) cannot be changed continuously. The frequency of the crystal lattice is often difficult to match with the fixed frequency of the scanning line, resulting in mostly too dense fringes that cannot be directly observed; thus, the calculation error is relatively large. This problem exists in both the STEM moiré method and the multiplication moiré method. Herein, we propose the STEM secondary nano-moiré method, i.e., a digital grating of similar frequency is superimposed on or sampling the primary moiré fringe or multiplication moiré to form the secondary moiré. The formation principle of the secondary moiré is analyzed in detail, with deduced theoretical relations for measuring the strain of STEM secondary nano-moiré fringe. The advantages of sampling secondary moiré and digital secondary moiré are compared. The optimal sampling interpolation function is obtained through error analysis. This method expands the application range of the STEM moiré method and has better practicability. Finally, the STEM secondary nano-moiré is used to accurately measure the strain field at the Si/Ge heterostructure interface, and the theoretical strain field calculated by the dislocation model is analyzed and compared. The obtained results are more compatible with the P-N dislocation model. Our work provides a practical method for the accurate evaluation of the interface characteristics of heterostructures, which is an important basis for judging the photoelectric performance of the entire device and the optimal design of the heterostructures.The multiple functions of peptides released from proteins have immense potential in food and health. In the past few decades, research interest in bioactive peptides of plant origin has surged tremendously, and new plant-derived peptides are continually discovered with advances in extraction, purification, and characterization technology. Plant-derived peptides are mainly extracted from dicot plants possessing bioactive functions, including antioxidant, cholesterol-lowering, and antihypertensive activities. Although the distinct functions are said to depend on the composition and structure of amino acids, the practical or industrial application of plant-derived peptides with bioactive features is still a long way off. Selleckchem Sodium Monensin In summary, the present review mainly focuses on the state-of-the-art extraction, separation, and analytical techniques, functional properties, mechanism of action, and clinical study of plant-derived peptides. Special emphasis has been placed on the necessity of more pre-clinical and clinical trials to authenticate the health claims of plant-derived peptides.Topological defects such as dislocations in crystalline materials usually have major impacts on materials‘ mechanical, chemical and physical properties. Detailed knowledge of dislocation core structures is essential to understand their impacts on materials‘ properties. However, compared with imaging of core structures of edge dislocations, direct imaging of a screw dislocation core is challenging from the traditional edge-on direction because the atomic displacements are parallel to the screw dislocation line. Here, a screw dislocation with a Burgers vector 1/2[110] in orthorhombic CsPbBr3 nanocrystals is directly imaged at the atomic scale with the incident electron beam perpendicular to the dislocation line using aberration-corrected scanning transmission electron microscopy (STEM). The dislocation core is characterized by helical atomic planes along the dislocation line. Quantitative assessments of the change rate of the screw displacements reveal the dislocation line locate at a plane containing Cs and Br atoms. This study reveals the atomic structure of screw dislocation cores in CsPbBr3 and provides useful information for the understanding of structure-property relations of halide perovskites.A multifunctional reactive fluorescent probe DTB was constructed for biosensing, aggregation inhibition, and toxicity alleviation of β-amyloid. The synergistic effect of hydrophobic interaction and covalent interaction makes DTB have more stable binding and better selectivity to Aβ. The detoxification effect of DTB on Aβ aggregates was also verified in live nerve cells and microglia cells. Furthermore, DTB exhibits an excellent staining of Aβ plaques.Large benchmark sets like GMTKN55 [Goerigk et al., Phys. Chem. Chem. Phys., 2017, 19, 32184] let us analyse the performance of density functional theory over a diverse range of systems and bonding types. However, assessing over a large and diverse set can miss cases where approaches fail badly, and can give a misleading sense of security. To this end we introduce a series of ‚poison‘ benchmark sets, P30-5, P30-10 and P30-20, comprising systems with up to 5, 10 and 20 atoms, respectively. These sets represent the most difficult-to-model systems in GMTKN55. We expect them to be useful in developing new approximations, identifying weak points in existing ones, and to aid in selecting appropriate DFAs for computational studies involving difficult physics, e.g. catalysis.We have carried out an investigation using density functional theory (DFT) of the atomic and electronic structures of SnSe2 layers on the surface and hydrogenation of this surface. We have considered a (2 × 2) SnSe2 superstructure oriented along the diagonal direction of the surface periodicity, for which scanning tunneling microscopy (STM) measurements have recently been reported. In the band structure calculations, while the s-p character surface state originating from each SnSe2 layer is determined, there is an additional half-filled surface state in the fundamental band gap region due to the Sn adatom. At the M̄ point in the Brillouin zone, a charge density wave (CDW) partial gap opening of ∼0.1 eV occurs between these surface states close to the Fermi level. Here, the CDW gap is caused by two reasons; (i) Fermi surface nesting, due to the inequivalent electron pockets at the M̄ point, and (ii) the out of plane weak electron-phonon coupling regime due to the mean-field (MF) theory (2Δ/kBTMF = 3.52). Upon hydrogen adsorption on the surface, we have obtained a β-phase SnSe layer and SeH2 molecule with a bond angle of ∼90°. The hydrogenated surface pushes the surface state associated with the SnSe2 layer into the Si projected bulk band continuum. After SeH2 desorption, the work function drops from 5.20 eV to 4.39 eV.The structural, electronic and vibrational properties of a water layer on Ag(100) and Ag(511) have been studied by first-principles calculations and ab initio molecular dynamics simulations. The most stable water structure on the Ag(100) and Ag(511) surfaces have been obtained. The AIMD results showed rather high stability of the water layer on the stepped surface at 140 K, indicating a crystal-like structure with long-range ordering. The calculated vibrational spectra at 140 K showed good agreement with the experimental results. On the Ag(100) surface, a red-shift was observed when the temperature increased from 140 K to 300 K caused by the change in the number of H-bonded (HB) hydrogen. On Ag(511), a three-fold splitting of the O-H stretch mode was observed. This can be explained by the special water structure at the stepped Ag surface the relatively strong water-metal interaction at the step edge and weak water-terrace interaction/strong water-water interaction at the terrace, which can also explain the high stability of the water layer on the Ag(511) surface.The present study aimed to systematically review the available investigations about the effects of okra on important inflammatory mediators including C-reactive protein (CRP), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Electronic databases such as PubMed, Scopus, WOS, ProQuest, and the search engine Google Scholar were searched until August 2021 and search alerts were activated in order to notice papers issued after the initial search. There was no restriction in the date and/or language. No human research was found; therefore, animal and in vitro studies were considered. Also, the citations or references of these studies were assessed to gain possible research. Review papers, book chapters, and grey literature such as conference papers, dissertations, and patents were not considered. Twenty-six papers were considered in the systematic review. The concentrations of inflammatory mediators including CRP, IL-1β, IL-6, and TNF-α mainly showed a downward trend after treatment with okra. In other words, the pooled direction of impacts was consistently lower for all of the evaluated inflammatory markers in the majority of preclinical (7 of 13 in vitro and 13 of 16 animal) studies. The findings proposed the potential of okra to lower CRP, IL-1β, IL-6, and TNF-α. Okra is a promising but not yet confirmed natural ingredient to decrease systemic inflammation in patients with inflammation-predisposed diseases. Further research is needed to focus on evaluating the effects of okra on inflammatory mediators with lower variability as well as the clinical outcomes of inflammation-related diseases in order to add sufficient power to the results of this study.A GLUTs/GSH cascade targeting-responsive bioprobe, GluCC, was rationally designed and synthesized for the first time via the coordination of copper ions with a glucose-modified coumarin derivative ligand (GluC). GluCC can specifically detect circulating tumor cells (CTCs) in lung metastatic mice models by targeting the Warburg effect and responding to overexpressed glutathione in the tumor microenvironment. This bioprobe with a simple detection procedure has significant advantages for CTC detection.