-
Carey Gould postete ein Update vor 12 Monaten
Tremor in Parkinson’s disease (PD) has distinct responsiveness to dopamine, which is supposed not be exclusively related to dopamine deficiency but has a close relationship with cholinergic system. This phenomenon indicates that cholinergic system may be an important regulatory for distinct dopamine responsiveness of parkinsonian tremor. Through investigating the alterations of cholinergic and dopaminergic network during levodopa administration, we aimed at exploring the mechanisms of differed dopamine responsiveness of parkinsonian tremor. Fifty-two PD patients with tremor were enrolled. MRI scanning, UPDRS III and its sub-symptom scores were collected in OFF and ON status (dopaminergic challenge test). Then, patients were divided into two groups (dopamine-resistant tremor and dopamine-responsive tremor) according to the tremor change rate median score. Dopaminergic and cholinergic network were obtained. LASSO regression was conducted to identify functional connectivity with distinct reactivity during levodopa administration between groups. Afterwards, detailed group comparisons, interaction and correlation analyses were performed. The reactivity of cholinergic connectivity showed the highest possibility to distinguish two groups, especially connectivity of right basal forebrain 123 to right parietal operculum cortex (R.BF123-R.PO). After levodopa administration, connectivity of R.BF123-R.PO was decreased for dopamine-responsive tremor while which remained unchanged for dopamine-resistant tremor. The reactivity of R.BF123-R.PO was negatively correlated with tremor change rate. Reduced cholinergic connectivity to parietal operculum may be an underlying mechanism for the responsive tremor in PD and the distinct cholinergic reactivity of parietal operculum to levodopa may be a core pathophysiology for the differed DA responsiveness of tremor in PD.Cranio-caudal respiratory motion and liver activity cause a variety of complex myocardial perfusion (MP) artifacts, especially in the inferior myocardial wall, that may also mask cardiac defects. To assess and characterise such artifacts, an anthropomorphic thorax with moving thoracic phantoms can be utilised in SPECT MP imaging. In this study, a liver phantom was developed and anatomically added into an anthropomorphic phantom that also encloses an ECG beating cardiac phantom and breathing lungs‘ phantom. A cranio-caudal respiratory motion was also developed for the liver phantom and it was synchronised with the corresponding ones of the other thoracic phantoms. This continuous motion was further divided into isochronous dynamic respiratory phases, from end-exhalation to end-inspiration, to perform SPECT acquisitions in different respiratory phases. The new motions‘ parameters and settings were measured by mechanical means and also validated in a clinical environment by acquiring CT images and by using two imaging software packages. To demonstrate the new imaging capabilities of the phantom assembly, SPECT/CT MP acquisitions were performed and compared to previous phantom and patients studies. All thoracic phantoms can precisely perform physiological motions within the anthropomorphic thorax. The new capabilities of the phantom assembly allow to perform SPECT/CT MP acquisitions for different cardiac-liver activity ratios and cardiac-liver proximities in supine and, for first time, in prone position. Thus, MP artifacts can be characterised and motion correction can be performed due to these new capabilities. The impact of artifacts and motion correction on defect detection can be also investigated.
Few studies have addressed the effects of human leukocyte antigen (HLA) alleles on different clinical sub-phenotypes in childhood steroid-sensitive nephrotic syndrome (SSNS), including SSNS without recurrence (SSNSWR) and steroid-dependent nephrotic syndrome/frequently relapse nephrotic syndrome (SDNS/FRNS). In this study, we investigated the relationship between HLA system and children with SSNSWR and SDNS/FRNS and clarified the value of HLA allele detection for precise typing of childhood SSNS.
A total of 241 Chinese Han individuals with SSNS were genotyped using GenCap-WES Capture Kit, and four-digit resolution HLA alleles were imputed from available Genome Wide Association data. The distribution and carrying frequency of HLA alleles in SSNSWR and SDNS/FRNS were investigated. Additionally, logistic regression and mediating effects were used to examine the relationship between risk factors for disease process and HLA system.
Compared with SSNSWR, significantly decreased serum levels of complement 3 (Croid dependent or frequent relapse in children with SSNS as mediators of immunoregulation.The emergence of acquired resistance limits the long-term efficacy of EGFR tyrosine kinase inhibitors (EGFR TKIs). Thus, development of effective strategies to overcome resistance to EGFR TKI is urgently needed. Trichostatin A solubility dmso Multiple mechanisms to reactivate ERK signaling have been successfully demonstrated in acquired resistance models. We found that in EGFR mutant non-small cell lung cancer (NSCLC) patients, acquired resistance to EGFR TKIs was accompanied by increased activation of ERK. Increased ERK activation was also found in in vitro models of acquired EGFR TKI resistance. ASN007 is a potent selective ERK1/2 inhibitor with promising antitumor activity in cancers with BRAF and RAS mutations. ASN007 treatment impeded tumor cell growth and the cell cycle in EGFR TKI-resistant cells. In addition, combination treatment with ASN007 and EGFR TKIs significantly decreased the survival of resistant cells, enhanced induction of apoptosis, and effectively inhibited the growth of erlotinib-resistant xenografts, providing the preclinical rationale for testing combinations of ASN007 and EGFR TKIs in EGFR-mutated NSCLC patients. This study emphasizes the importance of targeting ERK signaling in maintaining the long-term benefits of EGFR TKIs by overcoming acquired resistance.In designing drug dosing for hemodialysis patients, the removal rate (RR) of the drug by hemodialysis is important. However, acquiring the RR is difficult, and there is a need for an estimation method that can be used in clinical settings. In this study, the RR predictive model was constructed using the RR of known drugs by quantitative structure-activity relationship (QSAR) analysis. Drugs were divided into a model construction drug set (75%) and a model validation drug set (25%). The RR was collected from 143 medicines. The objective variable (RR) and chemical structural characteristics (descriptors) of the drug (explanatory variable) were used to construct a prediction model using partial least squares (PLS) regression and artificial neural network (ANN) analyses. The determination coefficients in the PLS and ANN methods were 0.586 and 0.721 for the model validation drug set, respectively. QSAR analysis successfully constructed dialysis RR prediction models that were comparable or superior to those using pharmacokinetic parameters. Considering that the RR dataset contains potential errors, we believe that this study has achieved the most reliable RR prediction accuracy currently available. These predictive RR models can be achieved using only the chemical structure of the drug. This model is expected to be applied at the time of hemodialysis.Diabetic neuropathic pain (DNP) is frequent among patients with diabetes. We previously showed that P2X3 upregulation in dorsal root ganglia (DRG) plays a role in streptozotocin (STZ)-induced DNP but the underlying mechanism is unclear. Here, a rat model of DNP was established by a single injection of STZ (65 mg/kg). Fasting blood glucose was significantly elevated from the 1st to 3rd week. Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) in diabetic rats significantly reduced from the 2nd to 3rd week. Western blot analysis revealed that elevated p-CaMKIIα levels in the DRG of DNP rats were accompanied by pain-associated behaviors while CaMKIIα levels were unchanged. Immunofluorescence revealed significant increase in the proportion of p-CaMKIIα immune positive DRG neurons (stained with NeuN) in the 2nd and 3rd week and p-CaMKIIα was co-expressed with P2X3 in DNP rats. KN93, a CaMKII antagonist, significantly reduce mechanical hyperalgesia and thermal hyperalgesia and these effects varied dose-dependently, and suppressed p-CaMKIIα and P2X3 upregulation in the DRGs of DNP rats. These results revealed that the p-CaMKIIα upregulation in DRG is involved in DNP, which possibly mediated P2X3 upregulation, indicating CaMKIIα may be an effective pharmacological target for DNP management.
Wild-type transthyretin-related amyloidosis cardiomyopathy (ATTRwt-CM) is an increasingly recognized cause of heart failure especially in elderly patients. The purpose of the present study was to determine retrospectively whether the quantitative indices of
Tc-pyrophosphate (PYP) SPECT/CT help to predict the prognosis of ATTRwt-CM patients when compared with other clinical parameters.
Sixty-eight patients with biopsy-proven ATTRwt-CM who underwent PYP SPECT/CT were enrolled. Baseline clinical characteristics, echocardiographic parameters, and qualitative and/or quantitative indices of planar and SPECT/CT imaging in PYP scintigraphy for each patient were included. For quantitative analysis of SPECT/CT, the accumulation ratio of PYP in the septum, posterior, anterior, lateral, and apex walls to the cavity pool was calculated as the septal wall-to-cavity ratio (Se/C), lateral wall-to-cavity ratio (La/C), anterior wall-to-cavity ratio (An/C), inferior wall-to-cavity ratio (In/C), and apical wall-to-cavity rt-CM patients.Human papillomavirus (HPV)-related cancer is one of the diseases entities for which the applications of radiotherapy have been increasing. Recently, the process of carcinogenesis from HPV infection and the mechanism of tumor immunity that develops during disease progression have been elucidated. In this review, we will describe the mechanism of tumor immunity and how chemoradiotherapy may overcome and improve the efficacy of tumor immunity. We will also discuss the usefulness of proteins involved with tumor immunity as a predictive marker of radiotherapy response, and present an overview of ongoing clinical trials of combinations of immune checkpoint inhibitors and radiotherapy to demonstrate the promising combination therapy that has been currently emerging.
Including additive and additive-by-additive epistasis in a NOIA parametrization did not yield orthogonal partitioning of genetic variances, nevertheless, it improved predictive ability in a leave-one-out cross-validation for wheat grain yield. Additive-by-additive epistasis is the principal non-additive genetic effect in inbred wheat lines and is potentially useful for developing cultivars based on total genetic merit; nevertheless, its practical benefits have been highly debated. In this article, we aimed to (i) evaluate the performance of models including additive and additive-by-additive epistatic effects for variance components (VC) estimation of grain yield in a wheat-breeding population, and (ii) to investigate whether including additive-by-additive epistasis in genomic prediction enhance wheat grain yield predictive ability (PA). In total, 2060 sixth-generation (F
) lines from Nordic Seed A/S breeding company were phenotyped in 21year-location combinations in Denmark, and genotyped using a 15K-Illumina-BeadChip.