• Falkenberg McLeod postete ein Update vor 1 Jahr

    Pine nut oil (PNO) is rich in a variety of unusual delta-5-non-methylene-interrupted fatty acids (NMIFAs), including pinolenic acid (PLA; all cis-5,-9,-12 183) which typically comprises 14 to 19% of total fatty acids. PLA has been shown to be metabolised to eicosatrienoic acid (ETA; all cis-7,-11,-14 203) in various cells and tissues. Here we review the literature on PNO, PLA and its metabolite ETA in the context of human health applications. PNO and PLA have a range of favourable effects on body weight as well as fat deposition through increased energy expenditure (fatty acid oxidation) and decreased food energy intake (reduced appetite). PNO and PLA improve blood and hepatic lipids in animal models and insulin sensitivity in vitro and reduce inflammation and modulate immune function in vitro and in animal models. The few studies which have examined effects of ETA indicate it has anti-inflammatory properties. Another NMIFA from PNO, sciadonic acid (all cis-5,-11,-14 203), has generally similar properties to PLA where these have been investigated. There is potential for human health benefits from PNO, its constituent NMIFA PLA and the PLA derivative ETA. However further studies are needed to explore the effects in humans.Vesicles, generally defined as self-assembled structures formed by single or multiple concentric bilayers that surround an aqueous core, have been widely used for biomedical applications. They can either occur naturally (e.g. exosomes) or be produced artificially and range from the micrometric scale to the nanoscale. One the most well-known vesicle is the liposome, largely employed as a drug delivery nanocarrier. Liposomes have been modified along the years to improve physicochemical and biological features, resulting in long-circulating, ligand-targeted and stimuli-responsive liposomes, among others. In this process, new nomenclatures were reported in an extensive literature. In many instances, the new names suggest the emergence of a new nanocarrier, which have caused confusion as to whether the vesicles are indeed new entities or could simply be considered modified liposomes. Herein, we discussed the extensive nomenclature of vesicles based on the suffix „some“ that are employed for drug delivery and composed of various types and proportions of lipids and others amphiphilic compounds. Neuronal Signaling antagonist New names have most often been selected based on changes of vesicle lipid composition, but the payload, structural complexity (e.g. multicompartment) and new/improved proprieties (e.g. elasticity) have also inspired new vesicle names. Based on this discussion, we suggested a rational classification for vesicles.The purpose of this study was to optimize modification conditions of selenized garlic polysaccharides (sGPS) and investigate its structural characterization, immune and antioxidant activities. Herein, selenized garlic polysaccharides (sGPS) were prepared using by HNO3-Na2SeO3 selenylation method. And then modification conditions of sGPS were optimized through L9 (34) orthogonal test. The structural characterization of sGPS were identified by the Fourier-transform infrared (FT-IR), Solid-State nuclear magnetic resonance (NMR) spectra, X-ray diffraction (XRD) and thermogravimetric (TGA). The morphology of sGPS was detected using scanning electron microscope (SEM) and transmission electron microscope (TEM). In vivo investigation showed that sGPS significantly improved serum hemagglutination-inhibition (HI) antibody titers against Newcastle disease virus, enhanced secretory IgA (sIgA), IFN-γ, IL-2 secretion in jejunum and trachea irrigation compared with vaccine immunized control group. Furthermore, it showed that sGPS had some effects on the antioxidant activities in livers of chickens. In conclusion, the optimal modification conditions of sGPS were as follows reaction temperature was 70 °C, the dosage of Na2SeO3 was 400 mg and reaction time was 6 h. The selenylation modification of garlic polysaccharides (GPS) could improve its immune and antioxidant activity in chickens.Arca subcrenata Lischke is a seafood with high nutritional value. In this study, we purified and characterized a novel water-soluble polysaccharide (ASPG-2) from Arca subcrenata with significant immunoregulatory effects and no apparent cell toxicity. ASPG-2 is a class of mixed-linkage α,β-d-glucan backbones with α-linked side chains with a molecular weight of 4.39 × 105 Da. Its structure was characterized as a repeating unit consisting of (1 → 3)-β-d-Glcp, (1 → 4)-α-d-Glcp, (1 → 4,6)-α-d-Glcp and (1 → 6)-α-d-Glcp. Using mouse RAW264.7 macrophages, we demonstrated that ASPG-2 exerted marked immunoregulatory effects by promoting the secretion of NO and increasing the phagocytosis of RAW264.7 cells in vitro. Moreover, flow cytometry analysis of the expression of the cell surface molecule CD86 revealed that ASPG-2 could polarize RAW264.7 cells into the M1 type. The immunomodulatory mechanism of ASPG-2 in macrophages was associated with the activation of the TLR4-MAPK/Akt-NF-κB signalling pathways. These results indicated that ASPG-2 might be researched and developed as a potential immunomodulatory agent or health product from marine organisms.In this study, two degraded polysaccharides were obtained by H2O2-Vc-ultrasonic and H2O2-Fe2+-ultrasonic treatment from Codium cylindricum. The basic structure of polysaccharides was characterized and the relationship between structure and antioxidant activity was studied. FTIR spectrum indicated that the degraded polysaccharides had similar functional groups (OH, CH, CO group) with ordinary polysaccharides. LC-MS analysis showed that the degraded polysaccharides were composed of the same monosaccharide units (mannose, galactose, arabinose, glucose, ribose) with Codium cylindricum polysaccharides, but the molar ratio was different. Meanwhile, the molecular weight and morphological feature of polysaccharides had been changed after degradation. Additionally, the antioxidant activity assay revealed that two degraded polysaccharides with lower molecular weight possessed better antioxidant property than ordinary polysaccharides. These results suggested that the basic structure of polysaccharides had not been damaged by two degradation methods, while the antioxidant activity was significantly enhanced.

Coupon More
Logo