• Rich Bush postete ein Update vor 12 Monaten

    Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.

    Several commercial and academic autologous chimeric antigen receptor T-cell (CAR-T) products targeting CD19 have been approved in Europe for relapsed/refractory B-cell acute lymphoblastic leukemia, high-grade B-cell lymphoma and mantle cell lymphoma. Products for other diseases such as multiple myeloma and follicular lymphoma are likely to be approved by the European Medicines Agency in the near future.

    The European Society for Blood and Marrow Transplantation (EBMT)-Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association collaborated to draft best practice recommendations based on the current literature to support health care professionals in delivering consistent, high-quality care in this rapidly moving field.

    Thirty-six CAR-T experts (medical, nursing, pharmacy/laboratory) assembled to draft recommendations to cover all aspects of CAR-T patient care and supply chain management, from patient selection to long-term follow-up, post-authorisation safety surveillance and regulatory issues.

    We provide practical, clinically relevant recommendations on the use of these high-cost, logistically complex therapies for haematologists/oncologists, nurses and other stakeholders including pharmacists and health sector administrators involved in the delivery of CAR-T in the clinic.

    We provide practical, clinically relevant recommendations on the use of these high-cost, logistically complex therapies for haematologists/oncologists, nurses and other stakeholders including pharmacists and health sector administrators involved in the delivery of CAR-T in the clinic.Elucidating the mechanism of the osteogenic phenotypic transdifferentiation of vascular smooth muscle cells (VSMCs) is the key to determining the diagnosis and treatment of arterial medial calcification (AMC). Long noncoding RNAs (lncRNAs) have been reported to participate in the regulation of vascular physiology and pathology. Here, we investigated the effect and mechanism of the lncRNA H19 on the osteoblastic differentiation of VSMCs induced by high phosphorus. H19 was expressed at high levels in high phosphorus-induced primary rat VSMCs. Further experiments indicated that H19 played a positive role in the osteoblast phenotypic transition by suppressing miR-103-3p expression and subsequently promoting osteoblast-specific marker expression, including bone morphogenetic protein 2 (BMP-2) and osteopontin (OPN). Mechanistically, we recognized RUNX family transcription factor 2 (Runx2) as a direct target of miR-103-3p. Moreover, H19 directly interacted with miR-103-3p, and overexpression of miR-103-3p reversed the upregulation of Runx2 induced by H19. Therefore, H19 positively regulated Runx2 expression by sponging miR-103-3p and promoted the osteoblast phenotypic transition in VSMC calcification. Collectively, the lncRNA H19 promoted osteogenic differentiation by modulating the miR-103-3p/Runx2 axis in the process of VSMC calcification induced by a high phosphorus concentration. The current study provided new insights into an important role for the lncRNA H19 as a miRNA sponge in VSMCs and supplied novel insights into lncRNA-directed diagnostics and therapeutics for vascular calcification.

    The purpose of this study was to evaluate clinical outcomes and survivorship of isolated biceps tenodesis (BT) at a minimum of 2 years and to identify patient-specific factors associated with these outcomes in patients undergoing BT without concomitant rotator cuff repair (RCR). We hypothesized that patient-reported outcomes would be significantly improved on American Shoulder and Elbow Surgeons Survey (ASES) and Single Assessment Numeric Evaluation (SANE), with a high rate of survivorship (>90%) at 2-year follow-up.

    A retrospective review of an institutional registry was performed to identify patients who underwent BT from July 2016 to December 2017. Patients >18 years old who underwent an open or arthroscopic BT procedure using an interference screw, button, or anchor for underlying bicipital pathology, without a concomitant RCR or shoulder arthroplasty, and were a minimum of 2 years postoperative were included. Patients were administered ASES and SANE questionnaires preoperatively and at final fo. WC was associated with a decreased likelihood of achieving PASS. These results support the continued use of isolated BT for treating biceps pathology.

    IV, case series.

    IV, case series.Iron has been emerging as a key contributor to aging-associated, chronic disorders due to the propensity for generating reactive oxygen species. To date, there are a limited number of publications exploring the role of iron in the pathogenesis of primary/age-related osteoarthritis (OA). The objective of this study was to determine whether reduced iron via pharmacologic iron chelation with deferoxamine (DFO) affected the development and/or severity of cartilage lesions in a primary OA model. At 12-weeks-of-age, 15 male Dunkin-Hartley guinea pigs received either 46 mg/kg DFO (n = 8) or vehicle control (n = 7) injected subcutaneously twice daily for five days each week. Movement changes, captured via overhead enclosure monitoring, were also determined. Termination occurred at 30-weeks-of-age. Iron was quantified in serum, urine, liver, and femoral head articular cartilage. Left knees were evaluated for structural changes using histopathology guidelines; and immunohistochemistry. Gene expression analysis was condd the progression of primary OA in an animal model and could hold potential as a translational intervention. These findings provide expanded insight into factors that may contribute to the pathogenesis of primary OA.Peroxynitrite (ONOO-) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. Here, the development of a new water-soluble and cationic boronate probe based on a coumarin-imidazolium scaffold (CI-Bz-BA) for the fluorescent detection of ONOO- in cells is reported. The chemical reactivity of the CI-Bz-BA probe toward selected oxidants known to react with the boronate moiety was characterized, and the suitability of the probe for the direct detection of ONOO- in cell-free and cellular system is reported. Oxidation of the probe results in the formation of the primary hydroxybenzyl product (CI-Bz-OH), followed by the spontaneous elimination of the quinone methide moiety to produce the secondary phenol (CI-OH), which is accompanied by a red shift in the fluorescence emission band from 405 nm to 481 nm. CI-Bz-BA reacts with ONOO- stoichiometrically with a rate constant of ∼1 × 106 M-1s-1 to form, in as.Ferroptosis and parthanatos are two types of programmed cell death associated with cerebral ischemia. There is a sizeable interest in seeking chemical components for the regulation of ferroptosis and parthanatos. Hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (AHSYB) mitigated cell death caused by oxidative stress due to antioxidant capacity, yet the mechanism is still uncertain. Thus, we investigated whether HSYA and AHSYB prevent death through these two pathways with the aim to elucidate their potential protective mechanisms of cerebral ischemia. In this study, oxidative stress model was established by treating PC12 cells with oxygen glucose deprivation and reperfusion (OGD/R). FM19G11 purchase Cellular functions and signaling pathways were analyzed in PC12 cells using cell counting kit-8 (CCK-8), flow cytometry, ELISA, iron assay kit, transmission electron microscopy (TEM), immunofluorescence, and western blot analysis. And the research proved HSYA and AHSYB protected cells from oxidative stress. The phenomenon is associated with ferroptosis and parthanatos. HSYA and AHSYB upregulated cystine/glutamate antiporter system xc- (system xc-) and glutathione peroxidase 4 (GPX4), returned the levels of GSH/GSSG ratio, reactive oxygen species (ROS) and iron ion, as well as alleviated lipid peroxidation. By reason of reducing ROS, HSYA and AHSYB restrained poly(ADP-ribose) polymerase-1 (PARP-1) overactivation, reduced the production of excess poly(ADP-ribose) (PAR) polymer and apoptosis inducing factor (AIF) nuclear translocation. The results suggested that HSYA and AHSYB limited ferroptosis and parthanatos to alleviate oxidative stress in PC12 cells. These findings may have implications for improving understanding of how drugs reduce oxidative stress and develop new strategies for treating degenerative diseases such as cerebral ischemia.Streptococcus pneumoniae is the leading cause of community-acquired pneumonia, resulting in more than one million deaths each year worldwide. This pathogen generates large amounts of hydrogen peroxide (H2O2), which will be converted to hypothiocyanous acid (HOSCN) by lactoperoxidase (LPO) in the human respiratory tract. S. pneumoniae has been shown to be more resistant to HOSCN than some bacteria, and sensitizing S. pneumoniae to HOSCN may be a novel treatment strategy for combating this deadly pathogen. In this study we investigated the role of the low molecular weight thiol glutathione in HOSCN resistance. S. pneumoniae does not synthesize glutathione but imports it from the environment via an ABC transporter. Upon treatment of S. pneumoniae with HOSCN, bacterial glutathione was reversibly oxidized in a time- and dose-dependent manner, and intracellular proteins became glutathionylated. Bacterial death was observed when the reduced glutathione pool dropped below 20%. A S. pneumoniae mutant unable to import glutathione (ΔgshT) was more readily killed by exogenous HOSCN. Furthermore, bacterial growth in the presence of LPO converting bacterial H2O2 to HOSCN was significantly impeded in mutants that were unable to import glutathione, or mutants unable to recycle oxidized glutathione (Δgor). This research highlights the importance of glutathione in protecting S. pneumoniae from HOSCN. Limiting glutathione utilization by S. pneumoniae may be a way to limit colonization and pathogenicity.Nuclear erythroid 2-related factor 2 (NRF2) is a critical regulator of oxidative stress in mammalian oocytes. Our previous study described the protective effects of Sestrin-2 (SESN2) as a stress regulator against endoplasmic reticulum (ER) stress in porcine oocytes during in vitro maturation (IVM). However, their roles in unfolded protein response-related signaling pathways in porcine oocyte maturation capacity remain unknown. The purpose of this study was to evaluate the role of SESN2/NRF2 signaling in H2O2-induced oxidative stress and ER stress via protein kinase-like ER kinase (PERK) downstream factor during porcine oocyte maturation. Here, we found that the p-NRF2(Ser40) activation in the nucleus of porcine oocytes was accompanied by PERK signaling downregulation using western blot and immunofluorescence staining at 44 h after IVM. The total and nuclear NRF2 protein expression was also induced in porcine oocytes following H2O2 and tunicamycin (Tm) exposure. Notably, the upregulation of PERK signaling significantly increased the SESN2 and NRF2 signaling in H2O2-and Tm-exposed porcine cumulus oocyte complexes.

Coupon More
Logo