-
Vinther Vest postete ein Update vor 11 Monaten, 4 Wochen
The Yangtze River Delta (YRD) urban agglomeration is one of the most developed regions in China. During recent decades, this region has experienced severe regional haze and photochemical smog pollution problems. In this study, we used a source-oriented chemical transport model to quantitatively estimate the effects of inter-city transport on fine particulate matter (PM2.5) and ozone (O3) among the 41 cities in the YRD urban agglomeration during the EXPLORE-YRD (EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation, and their Effects in the Yangtze River Delta) campaign (May 17 to June 17, 2018). The results show that inter-city transport is very significant in the YRD region. On average, the emissions from the local city, the other YRD cities, and the regions outside of the YRD contribute 25.3%, 49.9%, and 24.8% to the PM2.5, respectively, and they contribute 33.7%, 46.8%, and 19.5% of the non-background O3, respectively. On PM2.5 or O3 pollution days, the transport contribution from the non-local YRD cities becomes much more important, while the local emissions and the transport from non-YRD emissions become less important. The results also suggest that the cities within a distance of 184 km and 94 km contribute 60% of the PM2.5 and O3, respectively. Therefore, we recommend that regional cooperative control programs in the YRD consider emission controls over cities within these ranges. The range for primary PM2.5 (92 km) is very different from that for secondary PM2.5 (515 km). Cooperative emission controls of SO2 and NOx on a much larger regional scale are required to reduce the secondary PM2.5 in the YRD.We offer an overview of the COVID-19 -driven air quality changes across 11 metropolises in Spain with the focus on lessons learned on how continuing abating pollution. Traffic flow decreased by up to 80% during the lockdown and remained relatively low during the full relaxation (June and July). After the lockdown a significant shift from public transport to private vehicles (+21% in Barcelona) persisted due to the pervasive fear that using public transport might increase the risk of SARS-CoV-2 infection, which need to be reverted as soon as possible. NO2 levels fell below 50% of the WHO annual air quality guidelines (WHOAQGs), but those of PM2.5 were reduced less than expected due to the lower contributions from traffic, increased contributions from agricultural and domestic biomass burning, or meteorological conditions favoring high secondary aerosol formation yields. Even during the lockdown, the annual PM2.5 WHOAQG was exceeded in cities within the NE and E regions with high NH3 emissions from farming and targets are required to evaluate their abatement potential.Soil erosion is an increasingly serious eco-environmental problem, and effective control of soil erosion is an important part of soil resource protection and ecological restoration. In this study, the multi-scale characteristics and influencing factors of soil erosion were analyzed in the Beijing-Tianjin-Hebei (BTH) region from 2000 to 2015. The results showed that the average soil erosion in the study area was 3500 t/(km2·a), in which the severe erosion areas accounted for 10% of the total area. Although the total soil erosion rate decreased by 60% from 2000 to 2015, the rate of current soil erosion was higher than the soil loss tolerance. The severe erosion area had the highest aggregation index, making it the most suitable for centralized treatment. Meanwhile, the fractal dimension index of severe erosion showed a downward trend from 2000 to 2015. This decrease in complexity led to a more optimistic conservation situation. The hotspot areas overlapped with the relatively high erosion zones and were aggregated as three large patches in the northern, southwestern, and southern BTH regions. Soil erosion distribution depends on both anthropogenic activities and natural conditions. The slope factor, which reflects the impact of natural factors on soil erosion, was the most dominant factor on soil erosion from 2000 to 2010. Conversely, the land use factor, which is mainly controlled by humans, became the dominant factor in 2015. The distribution characteristics and influencing factors of soil erosion both had scale effects. As the scale decreased from city to town, the patches of high and severe erosion classes became more regular and aggregated, the hotspot area had the most concentrated and severe soil erosion rate at the town scale, and human impacts became dominant. Conservation targeting hotspot areas measured at the town scale, which was 20% of the total area, could reduce the total soil loss by 38%. For a region with a complex structure, the main influencing factors showed strong spatial dependence.The content of (micro)plastics and heavy metals were investigated in the fly ash, bottom ash and surface soil samples from a municipal solid waste incinerate plant. The abundance of microplastics was 23, 171, and 86 particles/kg dw, respectively. The type of microplastics in fly ash was fiber, and the main type in bottom ash and soil samples was fragment (43.0% and 29.3%), followed by film (26.3% and 25.0%), foam (13.0% and 25.1%), and fiber (17.7% and 20.7%). Most of the microplastics had obvious tearing marks, with the protrusions and scratches on their surfaces. Several types of heavy metals such as Cr, Cu, Zn, Pb were adsorbed on the surface of microplastics. Additionally, the column test demonstrated that the microplastics and heavy metals in the bottom ash can be significantly dissolved out under the impact of external precipitation. Results also indicated that acid rain precipitation easily dissolved heavy metals into the water environment from the bottom ash without special treatment or protection. This paper investigated the combined migration of microplastics and heavy metals from the bottom ash, which can provide theoretical basis for further study of properly treating the bottom ash and exploring the environmental behavior.Perfluoroalkyl substances (PFASs) have raised great attention as emerging contaminants due to their persistent and bioaccumulative characteristics. Following the global actions to limit perfluorooctanesulfonic acid (PFOS) and its salts, chlorinated polyfluorinated ether sulfonate (F-53B), as an alternative perfluorochemical, has been a focus during this period. In this study, PFASs in coastal seawater, sediment, and seaweed from the significant aquaculture bases of Porphyra haitanensis in the southeast of China were investigated. Their bioaccumulation and ecological risk were elucidated and associated human exposures to PFASs with consumption of aquatic products for rural and urban groups were calculated. The total PFASs levels in seawater and sediment were 21.52-241.86 ng/L and 4.55-26.54 ng/g·dw, respectively. F-53B was found frequently and has relative high concentration in seawater (ND-2.13 ng/L). The Porphyra haitanensis and Siganus fuscescens were also analyzed, with PFASs concentrations ranging from 10.45 to 29.98 ng/g·dw and 7.17 to 25.43 ng/g·dw, respectively. The total logarithm BAF of F-53B and PFOS in two kinds of detected seafoods were within 0-2.94 and 2.01-3.25, these values did not vary in different sites. The estimated daily intake (EDI) of PFASs through aquatic products consumption in rural and urban residents were 0.03-26.50 ng/kg bw/day and 0.17-37.01 ng/kg bw/day, respectively, based on the Dietary Guidelines for Chinese residents. The total EDI of PFASs via Porphyra haitanensis and Siganus fuscescens in different groups were significantly lower than the suggested tolerable daily intake (PFOS, 150 ng/kg bw/day; PFOA, 1500 ng/kg bw/day), which indicates that PFASs did not induce health risks to the residents living around these aquaculture bases.Rice cultivation under flooded conditions enhances arsenic (As) solubility and favors As accumulation in rice grain that poses an indisputable threat to human health worldwide. The reduction of sulfur may induce processes that decrease As solubility, but its impact on rice grain As species remains unresolved. Herein, we investigated the influence of sulfur (S)-containing materials, including chicken manure and elemental sulfur powder on As accumulation and speciation in rice grain as well as the dynamics of the porewater chemistry and solid-phase As solubility throughout the entire growth stage under continuous flooding and intermittent flooding conditions in pot experiments. The S amendments (200 mg S kg-1) to the soil significantly decreased inorganic As in rice grain under continuous flooding (~65% decrease) as well as under intermittent flooding (~70% decrease). Tanzisertib The chicken manure amendment promoted sulfur reduction and enhanced dissolvable Mn, Fe, and As at an earlier growth stage. The sequential extraction results corroborated a decrease in the soluble and exchangeable As (F1) and an increase in residual As (F5) fractions in the S-amended treatments. Solubility data suggested that As adsorption onto Fe oxides was the primary mechanism controlling As solubility rather than the formation of AsFe sulfides. Porewater As, considered to represent the most bioavailable As fraction, failed to explain the grain As accumulation. The time-averaged concentration of oxalate-extractable As explained grain arsenite best, suggesting that poorly crystalline Fe oxides may be the primary dissolvable reactive phases that control As bioavailability in the soil-rice system. Our results suggest that the application of S-containing soil amendments can effectively decrease inorganic As accumulation in rice grains grown under the flooded conditions, which are most widely applied in paddy rice production.Lime is widely applied as a soil amendment to reduce the grain cadmium (Cd) content in rice production. However, the effectiveness of liming on grain Cd reduction is inconsistent and often cannot meet the safety requirements established for rice production. To identify the factors causing the effectiveness of liming to vary, we collected data from peer-viewed articles regarding lime application in paddy soils that were published during the last ten years. The average Cd reduction rates in rice grains after liming were -44% across all the studies considered, which could be broken down into -48% for pot experiments only and -42% for field trials only. The results of a meta-analysis and decision tree analysis indicated that the experiment type (field or pot), lime dosage, lime type (CaCO3, Ca(OH)2, or CaO), soil environment factors (soil pH, soil available Cd content, soil total Cd, and Zn content), and rice cultivar all influenced the effectiveness of liming. Recommendations were made to guide future liming practice, e.g., (1) using a larger lime dosage when applied to soil with pH 200 mg/kg; (2) using CaCO3 when applied with large dosages; and (3) planting low-Cd accumulation rice cultivars while applying lime. CAPSULE A meta-analysis showed that the effectiveness of liming on rice grain Cd reduction was affected by the experiment type (field or pot), lime dosage, lime type, soil pH, rice cultivar, and soil total Cd and Zn content.Anthropogenic activities have led to the depletion of the ultraviolet radiation screening ozone layer, exposing aquatic biota to its harmful effects. Also, the rising applications of nanotechnology are resulting in the release and contamination of aquatic ecosystems with engineered nanometals like titanium dioxide nanoparticles (nTiO2). The rise in ultraviolet radiation interacts with nanometals, increasing their bioactivities to susceptible aquatic organisms such as algae and cyanobacteria. The effect of ultraviolet radiation B (UVB) and nTiO2 on Microcystis flos-aquae and Pseudokirchneriella subcapitata during inter-specific interaction was investigated. The specific growth rate (d-1) of M. flos-aquae exposed to nTiO2 increased significantly under monoculture conditions but was suppressed during co-culture with P. subcapitata. Contrarily, UVB stimulated the growth of the cyanobacterium regardless of the presence or absence of the green microalgae. However, there was a general decline in the growth of P. subcapitata following cultivation with M.